OU Physics Analysis

Why I’m Here

Phillip Gutierrez

University of Oklahoma
Outline

- The OU group
- Current analysis in b-physics
 1. CP-violation and Mixing Flavor tagging
 2. B_s mixing
- Top physics
 1. Past analysis
 2. Future prospects
- Summary and conclusions
OU Personnel

- Faculty
 - B. Abbott
 - P. Gutierrez
 - P. Skubic
 - M. Strauss

- Postdocs
 - S. Jain
 - M. Kopal
 - A. Pompoš
 - H. Severini

- Students
 - I. Hall
 - X. Zhang
Overview of Interests

- Electroweak symmetry breaking sector
 - Higgs searches
 - Mass \neq Weak fermion eigenstates \Rightarrow CKM matrix
 - Flavor mixing, mixing of CP eigenstates, CP-violation
- Rare decays
- Concentrate on Heavy Flavors (b and t quarks)
 - b-quark \Rightarrow Mixing and CP-violation
 - t-quark \Rightarrow Mass, $\sigma(p\bar{p} \rightarrow tt)$, rare decays, CKM, …
b-Physics

- CP-violation
 - Goal: measure angles/sides of unitarity triangle
 - 6 possible triangles from unitarity constraint of CKM matrix
 - Many experiments to contribute
 - Many non-standard model sources
 - Belle & BaBar find indication of this
 - Measurement of $\sin 2\beta$

\[
B^0(\bar{B}^0) \rightarrow J/\psi K_s \quad \Rightarrow \quad \sin 2\beta = 0.73 \pm 0.06
\]

\[
B^0(\bar{B}^0) \rightarrow \phi K_s \quad \Rightarrow \quad \sin 2\beta = \begin{cases} -0.96 \pm 0.5 \\ 0.45 \pm 0.43 \end{cases}
\]
b-Physics OU Analysis

- Plan to make $\sin 2\beta$ measurement
 - Measure asymmetry in $B^0(\bar{B}^0) \to J/\psi K_s$

 $$A_{CP} = \sin 2\beta \sin(\Delta m_d t)$$

- Need to tag flavor at production
 - 3 common methods
 - Opposite side lepton
 - Same side jet
 - Opposite side jet (OU effort here)
 - Have measured dilution in $B^\pm \to J/\psi K^{\pm}$
 - Studying how to translate to B^0 sample
 - Future to consider $B^0_s(\bar{B}^0_s) \to J/\psi \phi$
Studies underway to measure B_s mixing

- At present only possible at Tevatron
- Current limit $x_s > 19$ @ 95% CL
 $(x_s = \Delta m_s / \Gamma_s)$
 - Global fit of data indicates $x_s \approx 25$
- Need to measure flavor at production and decay
 - Considering $B_s^0(\bar{B}_s^0) \rightarrow D_s \ell \nu_\ell$ —a self tagged mode
 • Should be able to reach $x_s = 30$
t-Physics

- Least studied quark
 - ≈ 35 times heavier than b-quark
 - Yukawa coupling ≈ 1.4
 - Clearest manifestation of EWSB

$m_t \ (\sigma_{m_t} \approx \pm 3 \text{ GeV}) \ & \ M_W \ (\sigma_{M_W} \approx \pm 40 \text{ MeV})$

$\Rightarrow \ \delta M_H \approx 40\% M_H$

$\sigma(\bar{p}p \rightarrow t\bar{t} + X) \ \text{expect} \approx \pm 8\%, \ \text{theory} \approx \pm 10\%$

- Deviations could be indication of new physics

- Single top production $\bar{p}p \rightarrow t + X$ direct measurement of V_{tb}
 - At present limits come from unitarity of CKM assuming 3 generations
Members of our group contributed to Run I t analysis

Search for $t \rightarrow bH^+$

- Most straightforward extension to SM, add second Higgs doublet
- Introduces 4 new scalar particles with 2 charged
- Coupling: one doublet to weak isospin $+\frac{1}{2}$ & one to weak isospin $-\frac{1}{2}$ fermions; MMSM inspired
- Search in parameter space M_H vs. $\tan \beta$
t-Physics Past Analysis

- Carried out search using two methods
 - If $\sigma(\bar{p}p \rightarrow tt)$ lower than predicted, could be due to non-SM decays
 - Search parameter space for regions where SM and $t \rightarrow H^+$ have high efficiency of being found. Regions can be excluded since SM σ agrees with data
 - Direct search, look for excess of τ’s from H^\pm decays
Search for narrow resonance decay $M_x \rightarrow t\bar{t}$

- Expected in extended technicolor models
- Set limit $M_{t\bar{t}} > 560$ GeV for $\Gamma < 0.012M_{t\bar{t}}$
- Initiating new effort in single top search
 - Electroweak production
 - s and t channel contributions
 - Run I limits (Neural Net analysis)

\[
\sigma(\bar{p}p \rightarrow tb + X) < 17 \text{ pb} \\
\sigma(\bar{p}p \rightarrow tqb + X) < 22 \text{ pb}
\]

- Provides a direct measurement of V_{tb}
 - Expect a 12% error on V_{tb} using Run IIa data
Summary & Conclusions

- Our primary interest is studying the EWSB sector of SM
 - Will pursue physics through study of t & b quarks
- All these analysis require substantial Monte Carlo samples