

OU Physics Analysis Why I'm Here

Phillip Gutierrez

University of Oklahoma

Outline

The OU group Current analysis in *b*-physics 1. CP-violation and Mixing Flavor tagging 2. B_s mixing Top physics 1. Past analysis 2. Future prospects Summary and conclusions

OU Personnel

Faculty
B. Abbott
P. Gutierrez
P. Skubic
M. Strauss

Postdocs
S. Jain
M. Kopal
A. Pompoš
H. Severini

Students
I. Hall
X. Zhang

Electroweak symmetry breaking sector

- Higgs searches
 - Mass \neq Weak fermion eignstates \Rightarrow CKM matrix
 - Flavor mixing, mixing of CP eignstates, CP-violation
- Rare decays

Concentrate on Heavy Flavors (*b* and *t* quarks)

- *b*-quark \Rightarrow Mixing and *CP*-violation
- t-quark \Rightarrow Mass, $\sigma(p\bar{p} \rightarrow t\bar{t})$, rare decays, CKM, ...

Plan to make sin 2β measurement
 Measure asymmetry in B⁰(B
⁰) → J/ψK_s

$$A_{CP} = \sin 2\beta \sin(\Delta m_d t)$$

Need to tag flavor at production

- **3** common methods
 - Opposite side lepton
 - Same side jet
 - Opposite side jet (OU effort here)
 - Have measured dilution in $B^{\pm} \rightarrow J/\psi K^{\pm}$
 - Studying how to translate to B^0 sample

Future to consider $B_s^0(\bar{B}_s^0) \to J/\psi\phi$

Studies underway to measure B_s mixing

- At present only possible at Tevatron Current limit $x_s > 19$ @ 95% CL $(x_s = \Delta m_s / \Gamma_s)$
 - Global fit of data indicates $x_s \approx 25$
- Need to measure flavor at production and decay
 Considering B⁰_s(B⁰_s) → D_s ℓ ν_ℓ —a self tagged mode
 - Should be able to reach $x_s = 30$

t-Physics

Least studied quark

- ≈ 35 times heavier than b-quark
 Yukawa coupling ≈ 1.4
 - Clearest manifestation of EWSB
- $m_t (\sigma_{m_t} \approx \pm 3 \text{ GeV}) \& M_W (\sigma_{M_W} \approx \pm 40 \text{ MeV})$ $\Rightarrow \delta M_H \approx 40\% M_H$
- σ(pp → tt + X) expect ≈ ±8%, theory ≈ ±10%
 Deviations could be indication of new physics
- Single top production $\bar{p}p \rightarrow t + X$ direct measurement of V_{tb}
 - At present limits come from unitarity of CKM assuming 3 generations

t-Physics Past Analysis

Members of our group contributed to Run I t analysis

• Search for $t \to bH^+$

- Most straight forward extension to SM, add second Higgs doublet
- Introduces 4 new scalar particles with 2 charged
- Coupling: one doublet to weak isospin $+\frac{1}{2}$ & one to weak isospin $-\frac{1}{2}$ fermions; MMSM inspired
- Search in parameter space M_H vs. $\tan \beta$

Carried out search using two methods

- If $\sigma(\bar{p}p \rightarrow t\bar{t})$ lower than predicted, could be due to non-SM decays
- Search parameter space for regions where SM and $t \rightarrow H^+$ have high efficiency of being found. Regions can be excluded since SM σ agrees with data
- Direct search, look for excess of τ 's from H^{\pm} decays

t-Physics Past Analysis

0.14 0.14 0.12 0.12 0.100.10 0.08 0.08 0.060.06 -0.040.04 0.02 0.02 150 0.00.51.01.52.0 100 MH (GeV) log tan β

Exclusion Regions

Search for narrow resonance decay M_x → tt̄
 Expected in extended technicolor models
 Set limit M_{tt̄} > 560 GeV for Γ < 0.012M_{tt̄}

t-Physics Run II

Initiating new effort in single top search
Electroweak production *s* and *t* channel contributions
Run I limits (Neural Net analysis)

 $\sigma(\bar{p}p \to tb + X) < 17 \text{ pb}$ $\sigma(\bar{p}p \to tqb + X) < 22 \text{ pb}$

Provides a direct measurement of V_{tb}
Expect a 12% error on V_{tb} using Run IIa data

Summary & Conclusions

Our primary interest is studying the EWSB sector of SM
Will purse physics through study of t & b quarks

All these analysis require substantial Monte Carlo samples