TF1


class description - source file - inheritance tree

class TF1 : public TFormula, public TAttLine, public TAttFill, public TAttMarker


    public:
TF1 TF1(const char* name, const char* formula, Float_t xmin = 0, Float_t xmax = 1) TF1 TF1(const char* name, void* fcn, Float_t xmin, Float_t xmax, Int_t npar) TF1 TF1() TF1 TF1(const char* name, Double_t (*)(Double_t*, Double_t*) fcn, Float_t xmin = 0, Float_t xmax = 1, Int_t npar = 0) TF1 TF1(const TF1& f1) virtual void ~TF1() virtual void Browse(TBrowser* b) TClass* Class() virtual void Copy(TObject& f1) virtual Double_t Derivative(Double_t x, Double_t* params = 0, Float_t epsilon = 0) virtual Int_t DistancetoPrimitive(Int_t px, Int_t py) virtual void Draw(Option_t* option) virtual TF1* DrawCopy(Option_t* option) virtual void DrawF1(const char* formula, Float_t xmin, Float_t xmax, Option_t* option) virtual void DrawPanel() virtual Double_t Eval(Double_t x, Double_t y = 0, Double_t z = 0) virtual Double_t EvalPar(Double_t* x, Double_t* params = 0) virtual void ExecuteEvent(Int_t event, Int_t px, Int_t py) Double_t GetChisquare() TH1F* GetHistogram() TMethodCall* GetMethodCall() Int_t GetNDF() Int_t GetNpx() Int_t GetNumberFitPoints() virtual Text_t* GetObjectInfo(Int_t px, Int_t py) TObject* GetParent() Double_t GetParError(Int_t ipar) virtual void GetParLimits(Int_t ipar, Double_t& parmin, Double_t& parmax) virtual Double_t GetProb() virtual Double_t GetRandom() virtual void GetRange(Float_t& xmin, Float_t& ymin, Float_t& zmin, Float_t& xmax, Float_t& ymax, Float_t& zmax) virtual void GetRange(Float_t& xmin, Float_t& ymin, Float_t& xmax, Float_t& ymax) virtual void GetRange(Float_t& xmin, Float_t& xmax) virtual Double_t GetSave(Double_t* x) Float_t GetXmax() Float_t GetXmin() virtual void InitArgs(Double_t* x, Double_t* params) void InitStandardFunctions() virtual Double_t Integral(Float_t a, Float_t b, Double_t* params = 0, Float_t epsilon = 0.000001) virtual Double_t Integral(Float_t ax, Float_t bx, Float_t ay, Float_t by, Float_t az, Float_t bz, Float_t epsilon = 0.000001) virtual Double_t Integral(Float_t ax, Float_t bx, Float_t ay, Float_t by, Float_t epsilon = 0.000001) virtual Double_t IntegralMultiple(Int_t n, Float_t* a, Float_t* b, Float_t epsilon, Float_t& relerr) virtual TClass* IsA() const virtual void Paint(Option_t* option) virtual void Print(Option_t* option) virtual void Save(Float_t xmin, Float_t xmax) virtual void SavePrimitive(ofstream& out, Option_t* option) virtual void SetChisquare(Double_t chi2) virtual void SetMaximum(Float_t maximum = -1111) virtual void SetMinimum(Float_t minimum = -1111) virtual void SetNpx(Int_t npx = 100) virtual void SetNumberFitPoints(Int_t npfits) virtual void SetParent(TObject* p = 0) virtual void SetParError(Int_t ipar, Double_t error) virtual void SetParLimits(Int_t ipar, Double_t parmin, Double_t parmax) virtual void SetRange(Float_t xmin, Float_t ymin, Float_t xmax, Float_t ymax) virtual void SetRange(Float_t xmin, Float_t xmax) virtual void SetRange(Float_t xmin, Float_t ymin, Float_t zmin, Float_t xmax, Float_t ymax, Float_t zmax) virtual void ShowMembers(TMemberInspector& insp, char* parent) virtual void Streamer(TBuffer& b) virtual void Update()

Data Members

protected:
Float_t fXmin Lower bounds for the range Float_t fXmax Upper bounds for the range Int_t fNpx Number of points used for the graphical representation Int_t fType (=0 for standard functions, 1 if pointer to function) Int_t fNpfits Number of points used in the fit Int_t fNsave Number of points used to fill array fSave Double_t fChisquare Function fit chisquare Double_t* fIntegral Integral of function binned on fNpx bins Double_t* fParErrors Array of errors of the fNpar parameters Double_t* fParMin Array of lower limits of the fNpar parameters Double_t* fParMax Array of upper limits of the fNpar parameters Double_t* fSave Array of fNsave function values TObject* fParent Parent object hooking this function (if one) TH1F* fHistogram Pointer to histogram used for visualisation Float_t fMaximum Maximum value for plotting Float_t fMinimum Minimum value for plotting TMethodCall* fMethodCall Pointer to MethodCall in case of interpreted function Double_t (*)(Double_t*, Double_t*)* fFunction Pointer to function


See also

TF2

Class Description

 a TF1 object is a 1-Dim function defined between a lower and upper limit.
 The function may be a simple function (see TFormula) or a precompiled
 user function.
 The function may have associated parameters.
 TF1 graphics function is via the TH1/TGraph drawing functions.

  The following types of functions can be created:
    A- Expression using variable x and no parameters
    B- Expression using variable x with parameters
    C- A general C function with parameters

      Example of a function of type A

   TF1 *f1 = new TF1("f1","sin(x)/x",0,10);
   f1->Draw();

/*

*/


      Example of a function of type B
   TF1 *f1 = new TF1("f1","[0]*x*sin([1]*x)",-3,3);
    This creates a function of variable x with 2 parameters.
    The parameters must be initialized via:
      f1->SetParameter(0,value_first_parameter);
      f1->SetParameter(1,value_second_parameter);
    Parameters may be given a name:
      f1->SetParName(0,"Constant");

     Example of function of type C
   Consider the macro myfunc.C below
-------------macro myfunc.C-----------------------------
Double_t myfunction(Double_t *x, Double_t *par)
{
   Float_t xx =x[0];
   Double_t f = TMath::Abs(par[0]*sin(par[1]*xx)/xx);
   return f;
}
void myfunc()
{
   TF1 *f1 = new TF1("myfunc",myfunction,0,10,2);
   f1->SetParameters(2,1);
   f1->SetParNames("constant","coefficient");
   f1->Draw();
}
void myfit()
{
   TH1F *h1=new TH1F("h1","test",100,0,10);
   h1->FillRandom("myfunc",20000);
   TF1 *f1=gROOT->GetFunction("myfunc");
   f1->SetParameters(800,1);
   h1.Fit("myfunc");
}
--------end of macro myfunc.C---------------------------------

 In an interactive session you can do:
   Root > .L myfunc.C
   Root > myfunc();
   Root > myfit();


TF1(): TFormula(), TAttLine(), TAttFill(), TAttMarker()
*-*-*-*-*-*-*-*-*-*-*F1 default constructor*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
*-*                  ======================

TF1(const char *name,const char *formula, Float_t xmin, Float_t xmax) :TFormula(name,formula), TAttLine(), TAttFill(), TAttMarker()
*-*-*-*-*-*-*F1 constructor using a formula definition*-*-*-*-*-*-*-*-*-*-*
*-*          =========================================
*-*
*-*  See TFormula constructor for explanation of the formula syntax.
*-*
*-*  See tutorials: fillrandom, first, fit1, formula1, multifit
*-*  for real examples.
*-*
*-*  Creates a function of type A or B between xmin and xmax
*-*
*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*

TF1(const char *name,void *fcn, Float_t xmin, Float_t xmax, Int_t npar) :TFormula(), TAttLine(), TAttFill(), TAttMarker()
*-*-*-*-*-*-*F1 constructor using pointer to an interpreted function*-*-*-*
*-*          =======================================================
*-*
*-*  See TFormula constructor for explanation of the formula syntax.
*-*
*-*  Creates a function of type C between xmin and xmax.
*-*  The function is defined with npar parameters
*-*  fcn must be a function of type:
*-*     Double_t fcn(Double_t *x, Double_t *params)
*-*
*-*  see tutorial; myfit for an example of use
*-*  also test/stress.cxx (see function stress1)
*-*
*-*
*-*  This constructor is called for functions of type C by CINT.
*-*
*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*

TF1(const char *name,Double_t (*fcn)(Double_t *, Double_t *), Float_t xmin, Float_t xmax, Int_t npar) :TFormula(), TAttLine(), TAttFill(), TAttMarker()
*-*-*-*-*-*-*F1 constructor using a pointer to real function*-*-*-*-*-*-*-*
*-*          ===============================================
*-*
*-*   npar is the number of free parameters used by the function
*-*
*-*   This constructor creates a function of type C when invoked
*-*   with the normal C++ compiler.
*-*
*-*   see test program test/stress.cxx (function stress1) for an example.
*-*   note the interface with an intermediate pointer.
*-*
*-*
*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*

~TF1()
*-*-*-*-*-*-*-*-*-*-*F1 default destructor*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
*-*                  =====================

TF1(const TF1 &f1)

void Browse(TBrowser *)

void Copy(TObject &obj)
*-*-*-*-*-*-*-*-*-*-*Copy this F1 to a new F1*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
*-*                  ========================

Double_t Derivative(Double_t x, Double_t *params, Float_t epsilon)
*-*-*-*-*-*-*-*-*Return derivative of function at point x*-*-*-*-*-*-*-*

    The derivative is computed by computing the value of the function
   at point x-epsilon and point x+epsilon.
   if params is NULL, use the current values of parameters

Int_t DistancetoPrimitive(Int_t px, Int_t py)
*-*-*-*-*-*-*-*-*-*-*Compute distance from point px,py to a function*-*-*-*-*
*-*                  ===============================================
*-*  Compute the closest distance of approach from point px,py to this function.
*-*  The distance is computed in pixels units.
*-*
*-*  Algorithm:
*-*
*-*
*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*

void Draw(Option_t *option)
*-*-*-*-*-*-*-*-*-*-*Draw this function with its current attributes*-*-*-*-*
*-*                  ==============================================
*-*
*-* Possible option values are:
*-*   "SAME"  superimpose on top of existing picture
*-*   "L"     connect all computed points with a straight line
*-*   "C"     connect all computed points with a smooth curve.
*-*
*-* Note that the default value is "L". Therefore to draw on top
*-* of an existing picture, specify option "LSAME"
*-*
*-* NB. You must use DrawCopy if you want to draw several times the same
*-*     function in the current canvas.
*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*

TF1* DrawCopy(Option_t *option)
*-*-*-*-*-*-*-*Draw a copy of this function with its current attributes*-*-*
*-*            ========================================================
*-*
*-*  This function MUST be used instead of Draw when you want to draw
*-*  the same function with different parameters settings in the same canvas.
*-*
*-* Possible option values are:
*-*   "SAME"  superimpose on top of existing picture
*-*   "L"     connect all computed points with a straight line
*-*   "C"     connect all computed points with a smooth curve.
*-*
*-* Note that the default value is "L". Therefore to draw on top
*-* of an existing picture, specify option "LSAME"
*-*
*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*

void DrawF1(const char *formula, Float_t xmin, Float_t xmax, Option_t *option)
*-*-*-*-*-*-*-*-*-*Draw formula between xmin and xmax*-*-*-*-*-*-*-*-*-*-*-*
*-*                ==================================
*-*

void DrawPanel()
*-*-*-*-*-*-*Display a panel with all function drawing options*-*-*-*-*-*
*-*          =================================================
*-*
*-*   See class TDrawPanelHist for example

Double_t Eval(Double_t x, Double_t y, Double_t z)
*-*-*-*-*-*-*-*-*-*-*Evaluate this formula*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
*-*                  =====================
*-*
*-*   Computes the value of this function (general case for a 3-d function)
*-*   at point x,y,z.
*-*   For a 1-d function give y=0 and z=0
*-*   The current value of variables x,y,z is passed through x, y and z.
*-*   The parameters used will be the ones in the array params if params is given
*-*    otherwise parameters will be taken from the stored data members fParams
*-*
*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*

Double_t EvalPar(Double_t *x, Double_t *params)
*-*-*-*-*-*Evaluate function with given coordinates and parameters*-*-*-*-*-*
*-*        =======================================================
*-*
      Compute the value of this function at point defined by array x
      and current values of parameters in array params.
      If argument params is omitted or equal 0, the internal values
      of parameters (array fParams) will be used instead.
      For a 1-D function only x[0] must be given.
      In case of a multi-dimemsional function, the arrays x must be
      filled with the corresponding number of dimensions.

   WARNING. In case of an interpreted function (fType=2), it is the
   user's responsability to initialize the parameters via InitArgs
   before calling this function.
   InitArgs should be called at least once to specify the addresses
   of the arguments x and params.
   InitArgs should be called everytime these addresses change.


void ExecuteEvent(Int_t event, Int_t px, Int_t py)
*-*-*-*-*-*-*-*-*-*-*Execute action corresponding to one event*-*-*-*
*-*                  =========================================
*-*  This member function is called when a F1 is clicked with the locator
*-*
*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*

TH1F* GetHistogram()
 return a pointer to the histogram used to vusualize the function

Text_t* GetObjectInfo(Int_t px, Int_t /* py */)
   Redefines TObject::GetObjectInfo.
   Displays the function info (x, function value
   corresponding to cursor position px,py


void GetParLimits(Int_t ipar, Double_t &parmin, Double_t &parmax)
*-*-*-*-*-*Return limits for parameter ipar*-*-*-*
*-*        ================================

Double_t GetRandom()
*-*-*-*-*-*Return a random number following this function shape*-*-*-*-*-*-*
*-*        ====================================================
*-*
*-*   The distribution contained in the function fname (TF1) is integrated
*-*   over the channel contents.
*-*   It is normalized to 1.
*-*   Getting one random number implies:
*-*     - Generating a random number between 0 and 1 (say r1)
*-*     - Look in which bin in the normalized integral r1 corresponds to
*-*     - make a linear interpolation in the returned bin
*-*
*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-**-*-*-*-*-*-*-*

void GetRange(Float_t &xmin, Float_t &xmax)
*-*-*-*-*-*-*-*-*-*-*Return range of a 1-D function*-*-*-*-*-*-*-*-*-*-*-*
*-*                  ==============================

void GetRange(Float_t &xmin, Float_t &ymin, Float_t &xmax, Float_t &ymax)
*-*-*-*-*-*-*-*-*-*-*Return range of a 2-D function*-*-*-*-*-*-*-*-*-*-*-*-*
*-*                  ==============================

void GetRange(Float_t &xmin, Float_t &ymin, Float_t &zmin, Float_t &xmax, Float_t &ymax, Float_t &zmax)
*-*-*-*-*-*-*-*-*-*-*Return range of function*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
*-*                  ========================

Double_t GetSave(Double_t *xx)
 Get value corresponding to X in array of fSave values

void InitArgs(Double_t *x, Double_t *params)
*-*-*-*-*-*-*-*-*-*-*Initialize parameters addresses*-*-*-*-*-*-*-*-*-*-*-*
*-*                  ===============================

void InitStandardFunctions()
     Create the basic function objects

Double_t Integral(Float_t a, Float_t b, Double_t *params, Float_t epsilon)
*-*-*-*-*-*-*-*-*Return Integral of function between a and b*-*-*-*-*-*-*-*

   based on original CERNLIB routine DGAUSS by Sigfried Kolbig
   converted to C++ by Rene Brun


/*

This function computes, to an attempted specified accuracy, the value of the integral

displaymath120

Usage:

In any arithmetic expression, this function has the approximate value of the integral I.

a,b
End-points of integration interval. Note that B may be less than A.
params
Array of function parameters. If 0, use current parameters.
epsilon
Accuracy parameter (see Accuracy).

Method:

For any interval [a,b] we define tex2html_wrap_inline128 and tex2html_wrap_inline130 to be the 8-point and 16-point Gaussian quadrature approximations to

displaymath132

and define

displaymath134

Then,

displaymath138

where, starting with tex2html_wrap_inline140 and finishing with tex2html_wrap_inline142 , the subdivision points tex2html_wrap_inline144 are given by

displaymath146

with tex2html_wrap_inline148 equal to the first member of the sequence tex2html_wrap_inline150 for which tex2html_wrap_inline152 . If, at any stage in the process of subdivision, the ratio

displaymath154

is so small that 1+0.005q is indistinguishable from 1 to machine accuracy, an error exit occurs with the function value set equal to zero.

Accuracy:

Unless there is severe cancellation of positive and negative values of f(x) over the interval [A,B], the argument EPS may be considered as specifying a bound on the relative error of I in the case |I|>1, and a bound on the absolute error in the case |I|<1. More precisely, if k is the number of sub-intervals contributing to the approximation (see Method), and if

displaymath170

then the relation

displaymath172

will nearly always be true, provided the routine terminates without printing an error message. For functions f having no singularities in the closed interval [A,B] the accuracy will usually be much higher than this.

Error handling:

The requested accuracy cannot be obtained (see Method). The function value is set equal to zero.

Notes:

Values of the function f(x) at the interval end-points A and B are not required. The subprogram may therefore be used when these values are undefined.


*/ ---------------------------------------------------------------

Double_t Integral(Float_t, Float_t, Float_t, Float_t, Float_t)
 Return Integral of a 2d function in range [ax,bx],[ay,by]


Double_t Integral(Float_t, Float_t, Float_t, Float_t, Float_t, Float_t, Float_t)
 Return Integral of a 3d function in range [ax,bx],[ay,by],[az,bz]


Double_t IntegralMultiple(Int_t n, Float_t *a, Float_t *b, Float_t eps, Float_t &relerr)
  Adaptive Quadrature for Multiple Integrals over N-Dimensional
  Rectangular Regions


/*

*/


 Author(s): A.C. Genz, A.A. Malik
 converted/adaptedted by R.Brun to C++ from Fortran CERNLIB routine RADMUL (D120)
 The new code features many changes compared to the Fortran version.
 Note that this function is currently called only by TF2::Integral (n=2)
 and TF3::Integral (n=3).

 This function computes, to an attempted specified accuracy, the value of
 the integral over an n-dimensional rectangular region.

 N Number of dimensions.
 A,B One-dimensional arrays of length >= N . On entry A[i],  and  B[i],
     contain the lower and upper limits of integration, respectively.
 EPS    Specified relative accuracy.
 RELERR Contains, on exit, an estimation of the relative accuray of RESULT.

 Method:

 An integration rule of degree seven is used together with a certain
 strategy of subdivision.
 For a more detailed description of the method see References.

 Notes:

   1.Multi-dimensional integration is time-consuming. For each rectangular
     subregion, the routine requires function evaluations.
     Careful programming of the integrand might result in substantial saving
     of time.
   2.Numerical integration usually works best for smooth functions.
     Some analysis or suitable transformations of the integral prior to
     numerical work may contribute to numerical efficiency.

 References:

   1.A.C. Genz and A.A. Malik, Remarks on algorithm 006:
     An adaptive algorithm for numerical integration over
     an N-dimensional rectangular region, J. Comput. Appl. Math. 6 (1980) 295-302.
   2.A. van Doren and L. de Ridder, An adaptive algorithm for numerical
     integration over an n-dimensional cube, J.Comput. Appl. Math. 2 (1976) 207-217.

=========================================================================

void Paint(Option_t *option)
*-*-*-*-*-*-*-*-*-*-*Paint this function with its current attributes*-*-*-*-*
*-*                  ===============================================

void Print(Option_t *option)
*-*-*-*-*-*-*-*-*-*-*Dump this function with its attributes*-*-*-*-*-*-*-*-*-*
*-*                  ==================================

void Save(Float_t xmin, Float_t xmax)
 Save values of function in array fSave

void SavePrimitive(ofstream &out, Option_t *option)
 Save primitive as a C++ statement(s) on output stream out

void SetNpx(Int_t npx)
*-*-*-*-*-*-*-*Set the number of points used to draw the function*-*-*-*-*-*
*-*            ==================================================

void SetParLimits(Int_t ipar, Double_t parmin, Double_t parmax)
*-*-*-*-*-*Set limits for parameter ipar*-*-*-*
*-*        =============================
     The specified limits will be used in a fit operation
     when the option "B" is specified (Bounds).

void SetRange(Float_t xmin, Float_t xmax)
*-*-*-*-*-*Initialize the upper and lower bounds to draw the function*-*-*-*
*-*        ==========================================================
     The function range is also used in an histogram fit operation
     when the option "R" is specified.

void Streamer(TBuffer &b)
*-*-*-*-*-*-*-*-*Stream a class object*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
*-*              =========================================

void Update()
 called by functions such as SetRange, SetNpx, SetParameters
 to force the deletion of the associated histogram or Integral



Inline Functions


            Double_t GetChisquare()
               Int_t GetNDF()
               Int_t GetNpx()
        TMethodCall* GetMethodCall()
               Int_t GetNumberFitPoints()
            TObject* GetParent()
            Double_t GetParError(Int_t ipar)
            Double_t GetProb()
             Float_t GetXmin()
             Float_t GetXmax()
                void SetChisquare(Double_t chi2)
                void SetMaximum(Float_t maximum = -1111)
                void SetMinimum(Float_t minimum = -1111)
                void SetNumberFitPoints(Int_t npfits)
                void SetParError(Int_t ipar, Double_t error)
                void SetParent(TObject* p = 0)
                void SetRange(Float_t xmin, Float_t ymin, Float_t xmax, Float_t ymax)
                void SetRange(Float_t xmin, Float_t ymin, Float_t zmin, Float_t xmax, Float_t ymax, Float_t zmax)
             TClass* Class()
             TClass* IsA() const
                void ShowMembers(TMemberInspector& insp, char* parent)


Author: Rene Brun 18/08/95
Last update: 2.23/07 27/10/99 12.30.17 by Fons Rademakers
Copyright (c) 1995-1999, The ROOT System, All rights reserved. *


ROOT page - Class index - Top of the page

This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.